
Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

55

RFIC Passive Component Design and
Simulation in Python

Dušan Grujić, Pavle Jovanović, Dušan Krčum, and Milan Savić

Abstract – In this paper we present a Python based RFIC
component layout generator - Passive Component Lab and a
linear circuit simulator nicSim. These tools can be used for design
and optimization of RFIC passive components and circuits.
Capability to simulate S parameters in tabulated or State Space
representation allows the simulation of linear amplifiers as well,
by using transistor S parameters in given biasing conditions.
Implementation in Python offers great flexibility, while the
underlying speed and capacity of sparse matrix solvers available
in a standard Python module SciPy, implemented in C, allows the
simulation of real world problems.

Keywords – RFIC, Linear simulator, S parameters, Python.

I. INTRODUCTION

Circuit simulators have been a backbone of IC design
industry since the introduction of SPICE [1] forty years
ago. Since then many open source and commercial
derivatives have emerged, clearly revealing the academic
interest and commercial potential. General purpose
simulators are designed for simulation speed and capacity,
while it is desirable to be flexible and easily extensible. To
achieve the speed and capacity, the simulators are usually
implemented in C or C++, while the flexibility and
extensibility is ensured by the use of complex data
structures or object-oriented paradigm to abstract the
device models from simulator engine.

In this paper, we propose a different approach, focused
on flexibility and extensibility. Speed and capacity is of
secondary importance, since the simulator is designed for a
specific purpose, and is intended to be light-weight.
However, this does not mean that the simulator is not
usable in real-world problems.

Python is an interpreted programming language which
has lately been embraced by the scientific community.
Acceptance of Python can be attributed to several factors:
ease of use, large base of scientific modules for numerical
and symbolic calculation, quality data plotting and
presentation, and last but not least, open source license.

We have designed two software tools in Python –
Passive Component Lab for automatic layout generation,
and nicSim for linear circuit simulation. Both tools can be
used standalone, but they show full potential when used in
conjunction with Python based optimizers, as shown in the

proposed Design Flow.

II. PASSIVE COMPONENT LAB

Passive Component Lab is a collection of Python
classes used for automatic generation of integrated passive
components, such as inductors and transformers. All
components are fully parametrized, and the output can be
exported to CAD tools or EM simulators.

Technology information is contained in a separate
technology class, allowing the reuse of the same code in all
generator classes. The information is read from a textual
file containing the information about grid, available layers,
connectivity information and basic design rules. Additional
information, such as layer conductivity and integrated
circuit BEOL cross section, i.e. dielectric layers and their
conductivity, can be included for automatic 3D model
generation. Simple example of technology file is given
below.

grid = 0.01

layer TM2 metal
 GDSIINum = 134

 GDSIIType = 0
endlayer

layer TM1 metal
 GDSIINum = 126

 GDSIIType = 0
endlayer

layer TopVia2 via
 GDSIINum = 133

 GDSIIType = 0

 topmet = TM2
 botmet = TM1
 viaEnc = 0.5
 viaSize = 0.9

 viaSpace = 1.06
endlayer

The information contained in example technology file is
sufficient for generating DRC correct inductors and
transformers in top two metals. The example Python code
for generating a transformer balun with 4 primary windings
and 3 secondary windings is given below.

Pavle Jovanović and Dušan Krčum are with the School of
Electrical Engineering, University of Belgrade, Bul. kralja
Aleksandra 73, 11000 Belgrade, Serbia.

Dušan Grujić, Pavle Jovanović, Dušan Krčum, and Milan
Savić are with NovelIC, Omladinskih brigada 86p, 11070 Novi
Beograd, Serbia. E-mail: {first.last_name}@novelic.com

Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

56

tech = Technology("technology.txt")
bal=balun4x3(tech)
r=300 # Outer radius
w=8 # Winding width
s=3 # Winding spacing
signalLayer = "TM2"
underPassLayer = "TM1"
bal.emVias=True # Merge vias
bal.setupGeometry(r, w, s, signalLayer,
underPassLayer, "octagon")
bal.genGDSII('bal4x3_w8_s3.gds')

Example Python code reads the technology information,
generates the balun geometry and exports it to GDSII file,
which can be imported into any CAD tool or EM simulator.
Connectivity information is extracted from technology file,
and the vias connecting metals TM1 and TM2 are inserted
automatically at appropriate locations. Property emVias is
set to merge adjacent vias and simplify the model for EM
simulation. The generated transformer balun is shown in
Fig. 1.

The code similar to the provided one have been
successfully used in the development of high performance
UWB CMOS transceiver. The transceiver contained a
multitude of inductors and transformer baluns, which
would be impossible to draw manually. Performance
optimization was greatly simplified by automatic layout
generation.

Fig. 1. Transformer balun generated by example code

Automatic layout generator can generate inductors with
arbitrary number of windings, with step of 1/4 of a
winding, and with arbitrary geometry. Both square and
octagonal inductors are supported, in order to have a degree
of freedom to choose between maximum inductance for a
given area or improved quality factor. Various transformer
balun geometries are supported, with transformation ratio
from 1:1 to 1:4.

New geometries can be easily added, since the common

geometries are sub-classed and can be easily reused. For
example, filling a given area with vias is implemented as a
method of a base class, which is inherited by all layout
generators. The user has only to specify the coordinates of
opposing edges of a rectangle and a via layer; the via
drawing method reads the design rules and layer mapping
from a technology to produce a DRC correct layout in
terms of via size, spacing, and enclosure. Such degree of
flexibility allows the creation of very complex
parametrized geometries in a matter of minutes.

Additional features, such as predictive models for
passive structures are under development. Predictive
models for passive structures [2] provide a circuit model
for a given passive structure, and can be used for quick
performance evaluation and optimization. They can be
easily added to layout generator, since the technology file
and geometry specification are already present. Being able
to generate both predictive circuit models and physical
geometry of passive components will make the Passive
Component Lab a very powerful tool for every RFIC
designer.

III. NICSIM

Linear circuit simulator nicSim is fully implemented in
Python, and is intended to be self-contained, with minimum
dependency on external libraries. Reducing the
dependencies on external libraries and modules makes it
easy to install and use, and also light-weight in terms of
memory and disk space requirements. The only external
dependencies are SciPy [3] and NumPy [4], which are
commonly pre-installed on many Linux based systems.

The simulator itself is minimalistic, having only the
features that are required for the purpose of simulation and
optimization of circuits containing integrated passive
components. It uses Modified Nodal Analysis (MNA) [5]
formulation for solving the electrical circuit.

Sparse matrix solvers from SciPy are used for solving
the system of the form Ax=b. Direct matrix inversion is not
used in solving the system. Instead, a dedicated function
for solving the sparse system of linear equations is used.
This way the ill-conditioned system can be efficiently
handled by element pivoting implemented in a dedicated
solver function.

Underlying matrix solvers in SciPy are written in C, so
the solver performance is not affected by interpreter nature
of Python. This way best of both worlds is utilized:
flexibility and rapid development of Python and the sheer
speed of C.

The simulator has no frontend netlist parser, since the
circuit is built directly from Python. Circuit components,
such as resistors, capacitors, inductors, independent and
dependent voltage and current sources, are implemented as
Python classes. They can be instantiated as any Python
object and added to a circuit with a simple call to
appropriate method. The circuit itself and simulations are
also Python classes, so there is no limit in number of

Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

57

 circuits or simulations, except for the system memory.
Currently supported simulation types are DC, AC and S
parameter simulation.

Example Python code for S parameter simulation of
3 dB matched attenuator is given below.

import nicSim as sim
import numpy as numpy
cir=sim.circuit()
res = sim.resistor
r1 = res('R1', 'N1', 'N2', 17.6)
r2 = res('R2', 'N1', '0', 292.4)
r3 = res('R3', 'N2', '0', 292.4)
p1 = sim.port('P1', 'N1', '0')
p2 = sim.port('P2', 'N2', '0')
cir.addElement([r1, r2, r3, p1, p2])
spsim=sim.sp_analysis(['P1','P2'])
f_list=numpy.arange(1e6,100e6,1e6)
spsim.simulate(cir, f_list)

Simulation results can be easily plotted in publication
quality with Matplotlib [6], by using the following code.

from pylab import *
s11 = spsim.sParam[:,0,0]
s11db = 20*log10(abs(s11))
s21 = spsim.sParam[:,1,0]
s21db = 20*log10(abs(s21))
f = spsim.f
plot(f,s11db)
plot(f,s21db)

All components in nicSim are implemented as Python
classes. The component class contains the node names,
parameters and other data, such as frequency response, and
methods for parameter evaluation and matrix stamping.
This approach is similar to the one used in SPICE
simulator, where the simulator provides the interfaces for
matrix stamping and does not go into details of device
implementation. Adding new devices to nicSim is easy,
since the simulator does not need to be changed – only the
new component class with appropriate methods for
initialization and matrix stamping has to be designed.

Python is not a strongly typed programming language,
so variable type is dynamic, and can change during
program execution. This opens an opportunity for exciting
and diverse features, which would be very difficult to
implement in strongly typed languages, such as C.

One of the most obvious use of dynamic typing is the
use of expressions in component parameters. Early SPICE
implementations allowed only the use of numerical
constants for component parameter values. Newer SPICE
versions and commercial simulators allow the use of
variables and limited set of expressions for component
parameters. Implementation of such feature is by no means
simple and easy, since it requires the design of expression
parser and evaluator. Python can handle variables and
expressions in component parameters in a very simple
manner. The type of passed component parameter can be a
numerical constant or a string expression. Python built-in

evaluate function will evaluate the given expression in a
scope of defined variables. Evaluating the expression with
variables is nothing new. New is the possibility to pass a
function reference as a component parameter value.
Provided function will be called each time the component
parameter is evaluated, and its return value will be used.
This opens a possibility to have an arbitrarily complex
function, table look-up or even database or file based
component value.

Another example of Python dynamic typing use in
component values is symbolic circuit solving. Symbolic
circuit solvers have been designed in variety of ways [7],
but Python provides a natural way of implementation. To
convert a standard linear circuit simulator into symbolic,
one would only need to change the matrix stamping and
solver routine. Component matrix stamping routine would
have to be changed to stamp the string expression instead
of numeric value. The solver would have to be replaced by
symbolic solver, which are readily available for Python.
This approach was used in Ahkab circuit simulator [8],
which can solve the circuit both numerically and in a
symbolic fashion.

Besides the linear, frequency independent components,
nicSim supports n port S parameter blocks. This feature is
important since the simulator is intended for RF passive
network design and optimization, and it can include
measured or simulated component S parameters.
Additionally, S parameter block allows the simulation of
linear amplifiers, where the transistors are replaced by S
parameters. This way the whole amplifier can be simulated
and optimized.

S parameters are usually provided in Touchstone file
format, which contains the S matrix elements at a given
number of frequencies. Availability of S parameters at
discrete frequency points requires the use of interpolation
techniques. Another commonly used way of representing S
parameters is State Space representation:

Du+Cx=y
Bu+Ax=xE&

 (1)

where x represents the state vector, u is the input vector,
and the y is the output vector. Transfer function in
frequency domain, which is the S parameter is then given
by:
 () () D+BAsEC=sSij

1−− (2)
Formulations given in (1) and (2) are commonly used

by EM simulators to perform the adaptive frequency
sweep, for example Agilent Momentum. As a result, State
Space representation of S parameters is available and
response can be calculated at any frequency within the
valid frequency range.

IV. DESIGN FLOW

Design flow using Passive Component Lab and nicSim is
shown in Fig. 2. Layout generator and circuit simulator,
described in this paper, can be coupled with a user supplied

Proceedings of the 5th Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

58

Fig. 2. Design Flow with user supplied optimizer

Python-based optimizer to fit the given circuit model
parameters to simulated or measured S parameters of
passive component, such as integrated inductor or
transformer. Since both Passive Component Lab and
nicSim are written in Python, user supplied optimizer can
read the simulation data directly from data structures,
which eliminates the need for data translation. This is a
major advantage, since there are many Python based
optimizers to choose from.

Example of circuit parameter optimization to fit the
measurements are given in Fig. 3. In this case, the passive
component is an inductor, and the assumed circuit model is
single-π inductor model [9]. Optimized circuit model's Q
factor is very close to measured one up to self-resonant
frequency.

V. CONCLUSION

Despite being an interpreted programming language,
Python can be used for specialized circuit simulators.
Penalty in performance can in some cases be of secondary
importance, when flexibility and extensibility are of
interest.

Fig. 3. Optimized circuit model Q factor vs measurements

REFERENCES

[1] Nagel, L. W, and Pederson, D. O., “SPICE (Simulation

Program with Integrated Circuit Emphasis)”,
Memorandum No. ERL-M382, University of
California, Berkeley, Apr. 1973

[2] Gao, W., and Yu, Z., "Scalable compact circuit model
and synthesis for RF CMOS spiral inductors", IEEE
Transactions on Microwave Theory and Techniques,
Vol. 54, No. 3, March 2006., pp 1055-1064.

[3] SciPy, available at http://www.scipy.org/
[4] NumPy, available at http://www.numpy.org/
[5] Litovski, V., Zwolinski, M., “VLSI Circuit Simulation

and Optimization”, Chapman and Hall, London, 1997.
[6] Matplotlib, available at http://matplotlib.org/
[7] Đorđević, S., Petković, P.,“A Hierarchical Approach to

Large Circuit Symbolic Simulation“, Microelectronics
Reliability, 41, (2001), pp. 2941-2049

[8] Ahkab, available at http://ahkab.github.io/ahkab/
[9] Cao, Y. et al, "Frequency-independent equivalent-

circuit model for on-chip spiral inductors", IEEE
Journal of Solid-State Circuits, Vol. 38, No. 3, March
2003, pp. 419-426.

